Guy Bonneau has kindly pointed out two errors in [1]. The first is that the manifolds $M(k)$ and $M(k)/\mathbb{Z}_2$ do not admit $U(2)$-invariant Einstein-Weyl structures for $k \geq 2$; thus the last four entries in Table 4 (page 422) do not occur. The error is on pages 429–430. The analysis there is correct, except that the critical line to consider in Lemma 7.5 and the subsequent calculation is $\tau = \sigma$, instead of $\tau = 2\sigma/k$, because of the constraint $\chi \in (D, \pi]$ (equivalently, $\tau > \sigma$) occurring in the definition of χ. On this line, one has $G(D, \sigma) = \frac{1}{2}(k-2)(1+\sigma^2)^2(2D - \sin(2D))$, which is positive for $D \in (0, \pi)$ if $k \geq 2$, ruling out Einstein-Weyl solutions in these cases. However, there do remain solutions when $k = 1$.

This correction has the pleasant consequence that the topological classification of compact simply connected G-manifolds M with $\dim G \geq \dim M = 4$ is the same for both Einstein metrics and Einstein-Weyl structures.

The second error is the assertion that there is an isolated solution on $\mathbb{C}P^2$. If D is given the value appearing in Case 3a (page 427), when $E = \pi/2$, the first factor of (7.13) does in fact vanish, and this solution is a member of the one-parameter family.

References

Madsen: Department of Mathematics and Computer Science, Odense University, Campusvej 55, DK-5230 Odense M, Denmark

Pedersen: Department of Mathematics and Computer Science, Odense University, Campusvej 55, DK-5230 Odense M, Denmark; henrik@imada.ou.dk

Poon: Department of Mathematics, University of California, Riverside, California 92521, USA; ypoon@math.ucr.edu

Swann: Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, England; A.F.Swann@maths.bath.ac.uk

Received 17 February 1999.

1991 Mathematics Subject Classification. Primary 53C25; Secondary 57M40, 57S25.